X
[b][/b]
[i][/i]
[u][/u]
[code][/code]
[quote][/quote]
[spoiler][/spoiler]
[url][/url]
[img][/img]
[video][/video]
Smileys
2joy
sauer
pinkheart
pinocchio
poledance
prokates
queenbee
queeny
reindeerdance
rofl
roll
royalguard
run
runforhills
screaming
oooh
sherlock
shifty
shocked
sigh
sly
smashed
sneezy
snob
snowman
sob
sob-xmas
sorry
spam
pc-problem
offtopic
spooky-veildance
mistletoe
laptop
laugh
laundry
legs
lips
lmao
lock
lol
lols
looky
loveshower
me2you
middleton
mousie-trick-or-treat
nowhy
mousiekins
mrsandman
nails
naughty
nervous
newyear
nighty
nite
nomorekate
noreplies
northpole-dancer
not-in-front-of-the-children
noway
spooky-bat
spookyboo
kezza
x-mas_ginghouse
williamkate
wine
winter
withstupid
wo
wopedo
work
worship
x-mas_bff
x-mas_bored
x-mas_deer
x-mas_fireplace
x-mas_good-night
whereru
x-mas_hi
x-mas_james
x-mas_kisss
x-mas_laugh
x-mas_lol
x-mas_rolleyes
xmas is ruined
xmas-tree
xmasshopper
xmas_mousiekins
xmas_thumbsup
yeahright
yougogirlsign
william
wellduh
spy
thankyou
stop
study
tcp
tcp baking cookies
tcp decorating x-mas cards
tcp defending candy
tcp eating candy
tcp eating chocolate
tcp painting easter egg
tcp-bubbles
tcp-schaukel
tease
tehe
there
welcome6
think
thumbsdown
thumbsup
tired
ugly james
unsure
urwelcome
wed
weird
welcome
welcome1
welcome2
welcome4
king
pippa
kate-horror-queen
bestwishes
easter-james
easter-lol
bfly0
easter-no
easter-sly
easter-think
easter-wink
eating cookies
egg
eightball
bff2
bday-song
easter-egg-basket
bday-bash
eyes
eyes-xmas
fan
bauble
backontopic
baby
aww
flirt
flower
ass
announcement
easter-grin
easter-bunny
friends
cold
camera
carole making lovepotion for wills
cake-girl
catfight
celebration
bye
censored_not-in-front-of-the-kids
kate-catwalk
chill
clickhere
bs
coffee screen
cookie3
easter-bouncy
box
bouncy
bored3
bored
curtsey
blink
blabla
devil2
devilgirl
dontknow
dp
easter-akasha
angel
akasha_in_love
carol
hiss
hall-witch
halloween hide
akasha_did_it
hallowenwitches
happyeaster
hello
help
hi honey
hide
hot
hall-spell-check
hug
huh
ick
idea
interview
judge
justkidding
kate did it! it's her fault!
kate-bride
hall-whistle
halloween-knit
hall-sob
gotcha
get-a-room
getwellsoon
akasha-jester
akasha setting up x-mas lights
gingerbread
girl-friends
girlchair
goldstar4u
goodluck
hall-smilie
goodpost
akasha playing outside
hall-eat-candy
hall-rolleyes
hall-james
hall-eyes
akasha is the spider :-p
carol making lovepotion for wills
hall-cacklesmiley
akasha
traurig
schockiert
cool
huch
Aergerlich
grinsend
smiley
zwinkernd
laechelnd
augen rollen
zunge
teuflisch
azn
afro
weinen
kuesschen
verlegen
schweigend
unentschlossen
[pre][/pre]
Farben
[rot][/rot]
[blau][/blau]
[gruen][/gruen]
[orange][/orange]
[lila][/lila]
[weiss][/weiss]
[schwarz][/schwarz]
tfhjj611
| Zuletzt Online: 28.02.2022
avatar
Registriert am:
28.02.2022
Beschreibung
Polyimide Film for Harsh Applications
Dunmore offers coating, metalizing, laminating and perforating services for polyimide film. Dunmore can provide additional functionality through engineering and converting to meet particular physical requirements for mechanical, electrical, temperature and chemical properties not inherent to standard polyimide film. Dunmore is one of the leading converters of polymide film in the world.

Polyimide Film Industries and ApplicationsPolyimide film is typically used in industries such as:Aerospace - The Kapton? film is converted and layered together to make multi-layer insulation.
Automotive / Industrial - Polyimide films have excellent mechanical, electrical, temperature and chemical resistance making them optimal for demanding industries where performance is critical or harsh exposure conditions exist. Electronics - Polyimide film is the optimalLabeling - Polyimide film, with the right printable coating applied, makes an excellent choice for labels used in harsh environments.

Polyimide film is used in applications where reliable, durable performance is required, often in harsh environments. It also can be engineered and converted to meet particular physical requirements for mechanical, electrical, temperature and chemical properties.

What is Polyimide Film?
Polyimide films are used in applications where reliable, durable performance is required, often in harsh environments. Polyimide film is a lightweight, flexible polymer based material that has excellent heat and chemical resistant properties. Polyimide film can withstand temperatures ranging from -269° C to 400° C. In addition to excellent heat resistance properties, polyimide film also has excellent dielectric properties. Typical applications for polyimide film include multi-layer insulation blankets for space, flexible electronics, tapes, and various other high heat applications.

High Temperature Adhesive Polyimide Tape
Adhesive Polyimide Tape offers a combination of benefits. It is a high voltage insulation tape made of thin polyimide film. It is coated on one side with a silicone pressure sensitive adhesive which allows it to bond well to most surfaces and materials. The use of a silicone based adhesive is critically important as it allows Polyimide Tape to offer one of its greatest benefits; high temperature resistance.

This tape can withstand continuous exposure to temperatures up to 200°C, whilst still maintaining dielectric performance (actual mechanical maximum temperature rating is a little higher). When you combine this high temperature tolerance with its all-round adhesive performance, thin and highly conformable construction, solid polyimide film and economic price, you have a tape that can be used in a variety of areas.


Example Applications for Adhesive Polyimide Tape


Insulation of coils in electric motors.


Fastening heating elements.


Insulation for capacitors.


Masking for powder coating.


Bed surface for 3D printing with ABS.


Slot liner insulation.


Insulating and fastening flexible PCBs.


Magnet wire and cabling.


Interlayer insulation in motors and transformers.


Some of the many names we’ve heard over the years for this tape is Kapton Tape, adhesive Kapton, sticky Kapton and that sticky brown tape. With the possible exception of that last one, this is understandable but it is not technically correct.

Just to be clear, our Adhesive Polyimide Tape is not Kapton Tape. It is an excellent high temperature electrical insulation and masking tape with a range of benefits and we are happy to stand behind it without calling it something it is not.
A Transparent Polyimide Film as a Biological Cell Culture Sheet with Microstructures

In recent years, the research on stem cell cultures has been actively performed in order to generate cell populations for the functional recovery of human body parts lost by illness or injury. Polymer materials have attracted attention in this field because they have biocompatibility, good mechanical properties, and outstanding moldability. Moreover, polymers are flexible and cheap when compared to glass materials. Polymer materials are often used as cell culture sheets, and polymer substrates with fabricated microstructures have been reported to support the culture of biological cells. Polymer materials in the form of elastomeric gels, porous bodies, films, and particles are suitable substrates for a biomatrix, and can be applied for the culture of complex living systems. In particular, the porous scaffold fabricated on the cells culture substrate promotes cell growth and survival and reproduces the three-dimensional environmental microcosm that is normally present in the living body. These reports show that the cell culture is greatly influenced by the fabricated structure. Moreover, the porous scaffold has to have a structure that is appropriate for the intended purpose; the scaffold system has to have a small surface so that the seeding density of cells is at maximum.

Culture systems in which osteoblasts were grown in a straight-line structure made of PI, whose width and depth were 5 μm have been reported. In this report, the substrate material used was PI alone and the fabricated structure was a linear shape. The culture of stromal marrow cells (OP9), interstitial cells generated from bone marrow, has been attracting research attention. This is because stromal marrow cells enhance growth factor production, and support multiplication and specialization of hematopoietic stem and precursor cells. Use of these cells has been applied through tissue engineering to generate blood and bone progenitors.

It is anticipated that fabricating fine structures and controlling the growth of different stem cells will allow the generation of sufficient cell populations for use in research or in the clinic setting. To this end, we thought to fabricate and evaluate a fine polymer-based structure in which cells can successfully align and proliferate. Polyimide (PI) has superior heat resistance, mechanical strength, and chemical stability. Therefore, PI is expected to withstand the high temperatures required for the sterilization process. PI-based microstructures have already been shown to be transferable by hot embossing and are therefore suitable for microelectromechanical systems (MEMS) fabrication processes. However, conventional PI is not transparent and has an opaque tan color, which would make it difficult to observe any cells cultured on PI sheets. Therefore, we focused on transparent PI, which recently became commercially available.


Compared with the lab-scale preparation, the greatest difference for industrial manufacturing of polyimide films is the stretching process. Stretching process, either uniaxial or biaxial stretching of the gel-like PAA films, will result in the full orientation and extension for the polyimide molecular chains.


It shows the main steps of the industrial scale production line of polyimide film by biaxial stretching from PAA precursors. In this procedure, the precursor monomers are firstly introduced into the polymerization reactor containing the solvent. After PAA synthesis, the obtained solution is deaerated and cast in the form of a continuous film onto the surface of a heated rotating stainless steel drum. The solvent is partially evaporated and a part of the imidization reaction takes place simultaneously. Thus, a self-supported PAA film is formed. The gel-like PAA film is peeled from the metal drum and first stretched in the machine direction (MD) while controlling the stretching rate. The PAA film is then stretched in the transverse direction (TD). The solvent is removed by evaporation, and the film is heat treated by means of hot air or radiant heat from an electrical heater to give a biaxial oriented polyimide film. The transverse stretching is carried out at temperatures around 350°C to facilitate the imidization of PAA into polyimide. Such a procedure has been widely used for PI film production, and there has been significant patent activity in the past half century since the commercialization of PI films in 1960s. Up to now, most of the commercially available wholly aromatic PI films have been produced by such kind of procedure.
Geschlecht
keine Angabe
Dieses Mitglied war noch nicht im Forum aktiv.
Empfänger
tfhjj611
Betreff:


Text:

Melden Sie sich an, um die Kommentarfunktion zu nutzen


Xobor Forum Software von Xobor
Einfach ein eigenes Forum erstellen
Datenschutz